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Abstract

When projectors are used to display images on complex, non-planar surface geometry, indirect illumination be-
tween the surfaces will disrupt the final appearance of this imagery, generally increasing brightness, decreasing
contrast, and washing out colors. In this paper we predict through global illumination simulation this unintentional
indirect component and solve for the optimal compensated projection imagery that will minimize the difference
between the desired imagery and the actual total illumination in the resulting physical scene. Our method makes
use of quadratic programming to minimize this error within the constraints of the physical system, namely, that
negative light is physically impossible. We demonstrate our compensation optimization in both computer simu-
lation and physical validation within a table-top spatially augmented reality system. We present an application
of these results for visualization of interior architectural illumination. To facilitate interactive modifications to
the scene geometry and desired appearance, our system is accelerated with a CUDA implementation of the QP
optimization method.

1. Introduction & Motivation

Large scale displays and projection systems are becoming
more prevalent and integrated within our daily physical envi-
ronments. The brightness, contrast, dimensions, and afford-
ability of these displays is increasing, allowing them to be
incorporated into immersive display environments that sur-
round the user. In the typical dark theater setting, indirect
illumination can be safely ignored because a single planar
projection surface is used and all remaining surfaces in the
environment are suitably dark and absorptive. When these
display surfaces are oriented to face each other, for exam-
ple in a CAVE [CNSD∗92], the secondary scattering of light
should no longer be ignored. Doing so may result in final
surface illumination with increased brightness and decreased
contrast (Figure 1c). Automatic correction for this extra illu-
mination cannot be accurately solved with a constant scaling
term since indirect scattering depends on both the total quan-
tity and local distribution of light projected onto the surface.

Spatially Augmented Reality (SAR) [BR07] differs from
the traditional CAVE environment by making use of exist-
ing surfaces in the environment for projection. These appli-
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cation specific environments can more readily accept and
provide immersive experiences to multiple users. Smaller-
scale, table top SAR systems can convincingly bring to
life static objects by illuminating them with dynamic im-
agery [RWLB01,RZW02,HKYL06,SYYC09]. In these sys-
tems, the position and orientation of each projector and the
full geometry of the scene is known a priori, and the surfaces
are assumed to be a uniform diffuse material with a known
color. In this paper, we tackle the problem of unintended
secondary scattering of the projected light for multi-planar
or non-planar surfaces. Our goal is to determine what color
and intensity values should be projected onto each surface
so that the final intensity with scattering matches as closely
as possible the desired scene imagery (Figure 1g&h).

2. Related Work

Lighting Design and Common Illumination The inverse
lighting problem has previously been investigated using ra-
diosity to determine the relative intensities for a restricted
set of light sources [DSG91, SDS∗93, Con02] that will best
match a desired illumination output. Inverse radiosity is a
global illumination technique that recovers reflectance of
Lambertian surfaces with known geometry, direct illumina-
tion, and final radiance [YDMH99]. The problem is also re-
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a) geometry & materials b) desired appearance c) uncompensated d) exact solution (+)

e) exact solution (–) f) clamped simulation g) our solution h) our simulation

Figure 1: We aim to use projection to transform (a) this simple L-shaped room with a desk, where all surfaces have uniform
diffuse white reflectance (ρ = 0.6), into a more colorful room with simulated area lights on the ceiling. (b) The “desired” virtual
scene appearance includes subtle color bleeding from global illumination when light from the emitters bounce off the colored
walls [red:<0.65,0.4,0.4> green:<0.4,0.65,0.4> blue:<0.4,0.65,0.4> white:<0.6,0.6,0.6>]. (c) Simply projecting this desired
imagery onto the all-white surfaces results in a overly bright and washed out scene due to indirect scattering. An exact solution
to the compensation problem using IRC requires both (d) positive and (e) negative light. Clamping the negative values of the
exact solution to zero (f) results in poor color fidelity. In this paper, we formulate projection compensation as an optimization
problem with non-negativity box constraints. (g) Our solution results in a better representation of the intensities, colors, and
gradients in the scene when (h) projected onto the same white surfaces.

lated to work on compensating for the “common illumina-
tion” between synthetic and real objects [FGR93, DRB97,
GM00, CNR08].

Radiometric Compensation Radiometric compensation
is the adaptation of projection imagery to minimize blend-
ing artifacts caused by light modulation with local surface
attributes, including surface normal, distance from projec-
tor, color mismatch of projectors, and additional environ-
mental light [BEK05, NPGB03]. Using a coaxial camera
and projector, Fuji et al. demonstrated realtime radiomet-
ric compensation for dynamic surfaces and/or moving pro-
jectors [FGN05]. Many radiometric compensation methods
only take surface reflectance and projector response into
consideration. In contrast, Ashdown et al. proposed a ro-
bust content dependent photometric compensation frame-
work paying careful attention to appropriate choice of color
spaces and gamut to produce optimal results for spatially
varying or saturated projection surfaces [AOSS06]. How-
ever, the optimization method is likely too expensive for in-
teractive projection. Some content dependent compensation
methods make use of a perceptually-derived threshold map
of the desired imagery [RPG99]; for example, Grundhöfer
et al.’s real-time adaptive compensation implemented on the
GPU [GB08]. However, without pursuing an optimal result,
chrominance clipping errors might occur when projecting
onto a highly saturated color surface.

Inverse Lighting The radiometric compensation methods
above assume a simple geometric relationship between pro-

jector and camera and do not consider the global light inter-
reflection. When projecting images onto more complex sur-
faces, effects such as reflection and refraction can be sig-
nificant and should not be ignored. To correctly compensate
for these effects, the desired image should serve as the tar-
get result including this unavoidable indirect illumination,
and the projection image should be the corresponding di-
rect illumination necessary to produce this result. Seitz et
al. proposed the Interreflection Cancellation Operator (IRC),
which, in theory, can be used to cancel indirect scattering for
general BRDFs [SMK05]. Using active scanning with a sin-
gle point laser, Seitz et al. demonstrated acquisition of the
Impulse Scatter Function (ISF) that is used to represent the
IRC for arbitrary unknown geometry. However, this process
is time consuming and requires significant storage. If we are
only interested in computing the separate contributions of di-
rect and indirect illumination, it is not necessary to compute
the entire IRC matrix. Nayar et al. [NKGR06] demonstrated
how to extract these components for a wide range of global
illumination effects using a small set of structured light pat-
terns. Full light transport between a camera image and pro-
jection image can be modeled with the transport matrix first
introduced by Sen et al. [SCG∗05]. Similar to the ISF, this
matrix is computed offline using structured light. This type
of active scanning is undesirable in online SAR systems with
interactively modified geometry; thus, we have selected pas-
sive acquisition methods that require additional knowledge
about the geometry and materials.

Immersive environments Radiometric compensation and
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inverse lighting techniques have been used in immersive en-
vironments. The most closely related work to our research
is reverse radiosity, an iterative method proposed by Bimber
et al. [BGZ∗06] to compensate for indirect scattering in im-
mersive and semi-immersive projection displays. Similarly,
Mukaigawa et al. [MKO06] introduced an analytical solu-
tion to compensate for indirect scattering in diffuse projec-
tion environments at real time frame rates by reformulating
the classical radiosity equation. Habe et al. [HSM07] pre-
sented an algorithm to theoretically compensate for specu-
lar reflections. These compensation methods are essentially
equivalent to the IRC. IRC will always produce an exact so-
lution for the necessary projection imagery, though in some
cases the solution requires negative emittance (Figure 1e),
which is impossible for physical projection systems. Simply
clamping negative values to black prior to projection will re-
sult in inaccurate color reproduction and make the resulting
scene brighter than the desired imagery (Figure 1f).

Wetzstein and Bimber used the transport matrix for radio-
metric compensation [WB07]. In their work, a least squares
error metric is formulated and solved using constrained itera-
tive steepest descent [ZN06]. To achieve real-time video pro-
jection, the pseudo-inverse of the transport matrix is used,
which may generate values that are negative or greater than
the maximum projector intensity. This simple least squares
error metric might not ensure color fidelity because the color
channels are optimized independently. Furthermore, calibra-
tion of the transport matrix is both time and storage consum-
ing and when the projection surfaces or projector configura-
tions are modified, the system must be fully re-calibrated.

3. Our Contributions

The contributions we present in this paper include:

• Prediction of the secondary scattering within a spatially-
augmented reality system consisting of multiple projec-
tors and a collection of re-positionable planar and curved
diffuse projection surfaces.

• Formulation and solution of an optimization problem to
calculate the projection values that when combined with
the unavoidable indirect illumination results in a total il-
lumination that best matches the desired imagery.

• An interactive, prototype implementation of the method,
both in software and in physical realization that validates
the effectiveness of our formulation. We have also imple-
mented the algorithm in CUDA for use in an interactive
architectural lighting design system.

• Exploration of a variety of different projection surface
albedos and evaluation of the quality of resulting imagery.

4. Compensation Problem Overview

In our examples, we aim to use projection to transform uni-
form white or grey diffuse geometry into an illusion of a
more complex environment including colorful surfaces, area

light source emitters, and/or strong shadows of sunlight (e.g.,
Figure 1). By modeling the diffuse illumination transport in
the physical model, we are able to compensate for indirect
scattering of the projected light and more accurately control
the resulting intensities of patches in the physical model. We
outline the details of this problem using a basic patch-based
radiosity framework [GTGB84].

4.1. Formulation as a Reverse Radiosity Problem

Initially, we assume that the virtual desired scene, Sv, and
the physical scene, Sp, are geometrically the same; that is,
they consist of the exact same n patches. We assume that
all surfaces in both models are ideal diffuse reflectors, but
allow the diffuse color reflectance values of patch i for the
two scenes (ρv,i and ρ p,i) to differ. Our goal is to determine
what illumination values should be directly projected onto
the physical scene to create the target illumination within
the virtual scene. The direct illumination from the projector
onto a surface is modeled as a diffuse surface emittance per
patch and the indirect scattering is modeled using radiosity.

We construct Kv and Kp, the radiosity matrices for the
virtual and physical scenes. Likewise we define Bv,i and Bp,i
to be the radiosities (reflection of both direct and indirect
illumination) of patch i in the virtual and physical scenes,
respectively, and Ev,i and Ep,i to be the emitted light (reflec-
tion of direct illumination from the projectors) of patch i in
their respective scenes. Given these, we have the radiosity
equation for each scene:

KvBv = Ev (1)

KpBp = Ep (2)

where Bv, Bp, Ep, Ev are n×1 vectors.

4.2. Exact Solution

The objective of our projection system is to achieve phys-
ical radiosity values that match the virtual radiosity values;
hence, we set Bv = Bp. However, our only control over light-
ing in the physical scene is to set the physical patch emit-
tance values, Ep,i, by controlling their direct illumination
from the projectors. From Equations (1) and (2), we can
solve for the required real-scene emittances:

Ep = KpBp = KpBv = KpKv
−1Ev. (3)

In practice, Bv can be approximated more efficiently than
the brute force matrix inversion of Kv, and the resulting im-
ages derived from Bp. Equation (3) is called the analytical
solution of reverse radiosity [MKO06] and Kp is the IRC.
Unfortunately, although the computed emittances will pro-
vide an exact solution to Equation (3), this solution may in-
volve negative emittances at some physical patches, which is
impossible for physical systems. In some cases, the negative
quantities are significant and simply clamping these com-
ponents to zero may result in overly bright and poor color
fidelity projections (Figure 1f). Rather than clamping these
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terms to zero after-the-fact, one can use constrained least
squares to solve equation (3). However, if each color channel
is solved independently, this method may also result in low
color fidelity (Figure 3c). In the following section we present
a new objective function for use in constrained optimization
that directly addresses these color fidelity problems.

5. Constrained Optimization

To ensure that the projection solution is physically real-
izable, we reformulate the scenario as a constrained opti-
mization problem. The primary constraint is the physical
emittance non-negativity constraint: Ep ≥ 0, which means
each entry Ep,i ≥ 0. The solution can further be constrained
to match the physical limitations of the actual projectors,
namely a non-zero black level and a maximum intensity. In
the following sections we describe the terms of the objective
function we minimize to solve this optimization problem.

We define ri, gi, bi as the red, green, and blue channels of
each patch for the virtual “desired” scene, and r′i , g′i and b′i
as the three channels for the physical scene. Bv and Bp are
3n×1 vectors defined by:

Bv = [r1, ...,rn,g1, ...,gn,b1, ...,bn]T

Bp = [r′1, ...,r
′
n,g
′
1, ...,g

′
n,b
′
1, ...,b

′
n]

T

and y = Bv−Bp is the difference between these two vectors.

To quantify and improve the color fidelity of our solution,
we transform colors in RGB to another linear color space,
YPbPr, which separates the luminance and chrominance
components, and define our error metrics in this alternate
color space. The transformation from (r,g,b) to (Y ,Pb,Pr) is
accomplished with a 3×3 transformation matrix, T. ti j is the
entry in the ith row and jth column of T. Our metrics will
minimize chrominance error as defined by the linear YPbPr
color space; however, we note that it does not necessarily
minimize human perception of the color error. We will dis-
cuss this more in Section 6.

5.1. Minimize Absolute Luminance Error

The first term defines the sum of absolute luminance error of
the physical scene over all patches:

flumin = ∑
i
(Yi−Y ′i )

2 = yT W0y,

where

W0 = AT A, A = [t11I, t12I, t13I],

and I is an n×n identity matrix.

This term will only minimize the luminance difference;
thus, an objective function with this term alone is not suf-
ficient to obtain high quality results for scenes with strong
colors, such as the Cornell Box (Figure 2c).

5.2. Minimize Absolute Chrominance Error

Our second term targets the error in color, by minimizing the
differences in Pb and Pr:

fchrom = ∑
i
[(Pbi−Pb′i)

2 +(Pri−Pr′i)
2] = yT W1y,

where

W1 = BT B+CT C,

B = [t21I, t22I, t23I], C = [t31I, t32I, t33I].

By preserving Pb and Pr components, this term will attempt
to preserve the color of each patch in the scene.

5.3. Preserving Spatial Luminance Discontinuities

Our third term aims to preserve the gradients and disconti-
nuities in luminance between neighboring patches:

fnbd_lumin = ∑
(i, j)∈nbd

[(Yi−Y j)− (Y ′i −Y ′j)]
2 = yT W2y,

where (i, j) ∈ nbd means i and j are neighbors and

W2 =ET E =

 t2
11L t11t12L t11t13L

t11t12L t2
12L t12t13L

t11t12L t12t13L t2
13L

 ,

E =[t11D, t12D, t13D], (4)

D is the incidence matrix of the dual graph of the geome-
try, and L is the Laplacian matrix. This term can be further
extended to second derivative approximation by replacing D
by the Laplacian L in equation (4), and even higher.

5.4. Preserving Spatial Chrominance Discontinuities

Our final metric aims to preserve the gradients and discon-
tinuities of chrominance between neighboring patches. The
derivation of this term is similar to the previous one.

fnbd_chrom = ∑
(i, j)∈nbd

[(Pbi−Pb j)− (Pb′i−Pb′j)]
2+

[(Pri−Pr j)− (Pr′i−Pr′j)]
2 = yT W3y,

where

W3 = FT F+GT G,

F = [t21D, t22D, t23D],G = [t31D, t32D, t33D].

5.5. Complete Objective Function

We assemble the four terms described above to form the ob-
jective function of our optimization problem:

f =α flumin +β fchrom + γ fnbd_lumin +δ fnbd_chrom
=αyT W0y+βyT W1y+ γyT W2y+δyT W3y

=yT Wy (5)
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a) desired b) clamped inverse c) p1=0.35, p2=0.05 d) p1=0.55, p2=0.05 e) p1=0.75, p2=0.05 f) p1=0.95, p2=0.05

g) desired h) clamped inverse i) p1=0.05, p2=0.05 j) p1=0.05, p2=0.35 k) p1=0.05, p2=0.65 l) p1=0.05, p2=0.95

Figure 2: In the top row we transform an all-white box (ρ = 0.8) into (a) the classic Cornell box, with a top face emitter, and
materials red:<0.85,0.45,0.45>, blue:<0.45,0.45,0.85>, and white:<0.8,0.8,0.8>. Each image is overlaid with a plot of the
RGB channels of the pixels on the midline (dashed black). (b) The clamped inverse method results in an overall brighter image
and very little color on the left and right walls, because this exact solution relies heavily on negative light. In images (c-f) we
show our solutions for different settings of the p1 parameter: p1 = 0 minimizes the per-patch difference in luminance and p1 = 1
minimizes the per-patch difference in chrominance. In the bottom row we aim to transform an all-white box (ρ = 0.5) into (g) a
scene with the emitter on the left:<0.9,0.9,0.9> and other surfaces top/back/bottom:<0.8,0.8,0.8> and right:<0.3,0.3,0.3>. In
images (i-l) we show our solutions for different settings of the p2 parameter: p2 = 0 minimizes the absolute per-patch difference
and p2 = 1 minimizes the spatial difference. The green line in each plot in the bottom row shows a plot of the intensity value for
each pixel along the midline. Of the 5 simulations (h-l), image (i) achieves the minimum luminance value at the pixel between
the back and right walls and image (l) achieves the greatest luminance discontinuity at that same point.

where α , β , γ , and δ are nonnegative weighting parameters
that sum to 1, and W = αW0 + βW1 + γW2 + δW3. Since
Laplacian matrices are all positive semi-definite, matrix W
is guaranteed to be positive definite if T is a non-singular
matrix, which is always true for any color space that can be
linearly transformed from RGB.

We define parameters p1 and p2 to provide user control of
the objective function in an application specific manner. We
set the four coefficients in equation (5) from p1 and p2,

α = (1− p1)(1− p2), β = (1− p2)p1,

γ = (1− p1)p2, δ = p1 p2.

p1 controls the relative importance of luminance vs.
chrominance and p2 adjusts the relative importance of ab-
solute vs. spatial error. In general, p1 determines the color
fidelity, and p2 preserves the smoothness and discontinuity
in the desired virtual environments. We present results for
different relative weightings in Figure 2.

6. Optimization in Perceptually Uniform Color Space

Ideally, a solution to the compensation problem should re-
duce the perceived error between the desired and physical
scenes. The natural way to ensure this result is to minimize
error in a color space which attempts to be perceptually-
uniform, in that Euclidean distance in the space corresponds
roughly to perceived differences between observed colors.
However, the inherent non-linearity of the human visual sys-
tem, as captured in the CIE L∗a∗b∗ color space [McL76],

precludes efficient optimization of such metrics. To ex-
plore the substitution of a linear YPbPr space for the more
perceptually-uniform L∗a∗b∗, we used MATLAB fmincon
to minimize L∗a∗b∗ ∆E for a scene of 96 patches (Figure
3e). Even with this reduced geometry, the L∗a∗b∗ calcula-
tion takes more than 30 minutes to converge; indicating that
this approach is likely to be impractical. Running our QP-
based compensation algorithm in YPbPr on the same scene
(Figure 3d) produces results visually similar to the L∗a∗b∗

algorithm in seconds (Section 7.2).

For each of the simulations shown in Figure 3, we esti-
mated the perceptual difference by using CIE L∗a∗b∗ ∆E cal-
culations [McL76]. The results from our YPbPr optimization
are very similar to those of L∗a∗b∗ and significantly better
than both clamped inverse and non-negative least squares.
Note that about 2.3 ∆E’s are equivalent to one Just Notice-
able Difference (JND).

7. Implementation Details

In this section we discuss methods to solve the optimization
problem outlined in Section 4 and the implementation details
and resulting performance for each method.

7.1. Quadratic Programming

Equation (5) can be further derived to:

f = (Bv−Kp
−1Ep)T W(Bv−Kp

−1Ep)

= Bv
T WBv−2Bv

T WKp
−1Ep +Ep

T Kp
−T WKp

−1Ep.
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a) desired b) clamped inverse c) least squares d) YPbPr e) (L*,a*,b*)

∆E = 16.4, ∆Emax = 33.2 ∆E = 11.4, ∆Emax = 25.4 ∆E = 6.24, ∆Emax = 14.9 ∆E = 5.94, ∆Emax = 13.2

Figure 3: We compare the quality of the result using d) our linear YPbPr metric to e) the optimal solution within the nonlinear
(L*,a*,b*) perceptually-uniform color space. The a) desired image, b) clamped inverse solution, and c) box constrained least
squares solution are also included. The global illumination and compensation results for all images are computed using a coarse
96 triangle mesh. The physical surface albedo, ρ = 0.8, and the virtual materials are red:<0.8,0.5,0.5> blue:<0.5,0.5,0.8>
white:<0.8,0.8,0.8>. Note that the ceiling polygon is brighter and more accurate in the YPbPr image yet the color fidelity is
better with (L*,a*,b*). The mean and max L∗a∗b∗ ∆E for each solution is listed below the image.

Thus, our compensation formulation maps to a Quadratic
Programming (QP) problem:

f =
1
2

xT Qx+ cT x (6)

subject to x≥ 0 (or the appropriate minimum and maximum
intensities limits of the projectors) by letting x = Ep, c =
−2Kp

−T WBv, and Q = 2Kp
−T WKp

−1. Note that the term
Bv

T WBv is disregarded in Equation (6) since it is constant
and will not affect the optimization result.

There are several algorithms available to solve QP prob-
lems, such as the active set strategy [GMSW84] and pre-
conditioned conjugate gradients [Kny91]. Zhang and Na-
yar [ZN06] used a steepest descent algorithm to solve a
similar box constraint optimization problem. However this
method has poor convergence performance for some func-
tions. Because the Hessian matrix Q in equation (6) is pos-
itive definite, and the constraint is a box constraint, we are
able to use the two-metric projection method [Ber82] to at-
tain a quadratic convergence rate.

7.2. CUDA

We have implemented our optimization algorithm via
the two-metric projection method using NVIDIA’s CUDA
framework [NVI09]. CUDA provides an interface for soft-
ware programmers to access the parallel computing ability
of modern GPUs. It also provides libraries for high perfor-
mance numerical computing, including Linear Algebra and
FFT. Our implementation makes use of the CUBLAS library.
We also use the Cholesky factorization code provided by
Volkov and Demmel. [VD08].

We achieve a significant performance improvement from
the GPU on a modern desktop with a 512 megabyte NVIDIA
8800GT graphics card and Intel Core 2 QUAD Q9450 CPU.
For a Cornell Box scene with about 1200 patches, once the
precomputation of form factor and Laplacian matrices is fin-
ished, it takes 0.28 seconds for the algorithm to converge for

a physical environment with ρ = 0.642 and 1.29 seconds for
ρ = 0.9. The corresponding implementation in MATLAB
runs for about 15.65 and 17.76 seconds respectively.

To reduce the running time, our implementation caches
4 critical matrices in graphics card memory. Each one is a
3n× 3n single precision floating point matrix, where n is
the number of patches in the scene. For our Cornell Box
scene, this cached memory is approximately 200 megabytes.
Thus, we are currently limited to scenes with at most 1600
patches in the physical environment, Sp. This problem can
be alleviated by optimizing the memory usage, which is an
interesting topic for future work. In addition, rapid advances
in graphics hardware and memory size will further alleviate
these restrictions.

8. Physical Validation

To validate our compensation we have recreated the Cornell
Box scene within a five-sided physical environment where
all the surfaces have the same diffuse neutral-colored (white
or grey) reflectance properties. Our physical test setup con-
sists of opaque projection surfaces on a table top surrounded
by four projectors mounted above the user’s head and di-
rected toward the table (Figure 4a). We tested a variety of
matte papers and paints on the interior of this box with albe-
dos ranging from 0.06 to 0.94, which were measured using
an optical reflectometer. In the mathematics of our compen-
sation algorithm, we assume that all physical surfaces are
perfectly Lambertian. We also created variations of the origi-
nal Cornell Box to serve as test cases for the virtual “desired”
scene. Figure 5 presents a small selection of these tests using
the different compensation strategies. For each example we
show a simulated projection as well as a photograph of the
actual projection within our physical scene for validation.

As the average albedo of the surfaces in the physical scene
increases, the indirect component becomes a larger fraction
of the total illumination. On the more challenging test cases
(when the physical surfaces have higher albedo than the vir-
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a) b)

Figure 4: The overall setup of our table-top spatially aug-
mented reality system is shown in the left image. A single
camera above the scene detects the current geometry that is
then communicated to four calibrated projectors which dis-
play imagery on the scene. The right image shows an ex-
ample physical scene with uniform matte white projection
surfaces. Note: Both images were captured with bright room
lighting. During normal use the room lighting is turned off.

tual scene) our method performs significantly better than the
clamped inverse solution used in previous work (Section 2).
For scenes with darker physical albedo, the QP solution and
the clamped solution are more similar and both match the
desired scene quite well, as expected.

9. Application to Architectural Lighting Design

The application that initially motivated our work is the simu-
lation of global illumination within a physical small scale ar-
chitectural model [SYYC09]. The geometry of the architec-
tural design is sketched with diffuse white foam-core walls
(shown in Figure 4b). The user specifies windows and the
desired material properties with additional color-coded to-
kens. The ability to change the apparent surface reflectance
properties within an immersive augmented reality environ-
ment is a powerful tool for interior design. The walls and
tokens are detected by a calibrated camera above the table.
The closed 3D geometry of the intended architectural model
must be inferred from these walls, filling in the gaps between
the walls and adding a ceiling [SYYC10]. Thus, neither the
geometry nor the materials of the physical scene match the
intended design. The goal is to project imagery onto the in-
terior of the physical walls to mimic the appearance of the
intended design under a specified illumination condition.

Geometric differences between Sv and Sp An important
modification to the initial problem described in Section 4 is
to allow geometric differences between Sv and Sp. In fact,
in many augmented or mixed reality systems it is neces-
sary to omit portions of the physical scene to allow unob-
structed views for the users and projectors, except when rear-
projection displays are used. In other words, while a tar-
get application (e.g., global illumination calculations using
radiosity) might require a “watertight” virtual scene, often
the physical scene is not watertight. We call these missing
patches, which exist in Svbut not Sp, fillin geometry. Further-
more, the physical scene may have additional geometry that

will cause unintended inter-reflections of light or obstruct
the viewpoint of the projectors. We call this extra geometry
(patches that exist in Sp but not Sv). Patches that exist in
both scenes are called projection surfaces.

To determine the desired global illumination solution, we
construct the virtual form factor matrix, Kv, with the projec-
tion and fillin surfaces (omitting the extra geometry). Since
the fillin geometry does not have a physical counterpart, we
disregard the computed Bv,i for these patches. To calculate
the compensated projection values, we construct the phys-
ical form factor matrix, Kp, with the projection and extra
surfaces (omitting the fillin geometry). We do not have tar-
get values for Bp,i values for the extra patches from the vir-
tual scene; thus, in our examples we set the target radiosity
value for these patches to be the minimum intensity of our
projectors.

Iterative Architectural Design Figure 6 and our compan-
ion video present examples of architectural designs that were
modeled with our table-top spatially augmented reality sys-
tem for daylighting visualization. The system is sufficiently
fast and practical for interactive visualization and analysis
of lighting conditions during architectural design. The video
includes animations of a single day (March 21st) within each
space. As the sun moves across the sky from east to west the
shadows of bright sunlight through the windows play across
several brightly colored walls.

Our implementation runs sufficiently fast to be useful in
iterative, interactive visualization. When the geometry of the
physical scene is modified, the system must perform image
processing and mesh generation [SYYC10], calculate form
factor matrices, and initialize matrices for QP. Depending
on the complexity of the scene, the total time for these steps
is 11-16 seconds, for the examples shown in this paper and
in the video. After this precomputation, the desired lighting
condition and optimal projection imagery (according to our
YPbPr metrics) are computed in 1-1.5 seconds.

Radiosity Simulation with High Frequency Detail In our
daylighting simulation system, direct sun illumination is an
important visual cue for users to understand the geometry of
their design. To capture the hard shadow boundaries cast by
sunlight, we use shadow volumes to render direct sun illu-
mination and add it to the indirect illumination computed by
radiosity. This hybrid rendering algorithm is also applied to
the compensation results. For each patch directly illuminated
by the sun, we first calculate the fraction s of the total illu-
mination of the patch that comes directly from the sun. We
also compute a, the fraction of the patch area illuminated
by the sun. Then the compensated direct illumination d can
be computed by multiplying s with the compensated value
computed from our QP optimization. The projection value
for each patch is d/a. These patch values are interpolated to
determine the values for each vertex and used to render the
stencil shadow volumes. Results are shown in Figure 6.
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Figure 5: Photographic comparisons within five-sided physical boxes with different reflectances. (a-f) Light pastel-colored
virtual Cornell Box scene [red:<0.5,0.5,0.8> white:<0.836,0.836,0.836> blue:<0.5,0.5,0.8>] projected on very pale grey
(ρ = 0.836) physical material. (g-l) Darker-colored virtual Cornell Box scene [red:<0.6,0.2,0.2> white:<0.615,0.615,0.615>
blue:<0.2,0.2,0.6>] projected on light grey (ρ = 0.615) physical material. (m-r) A scene with a very dark virtual wall
[green:<0.05,0.4,0.05> white:<0.4,0.4,0.4> black:<0.05,0.05,0.05>] projected on medium grey (ρ = 0.365) physical mate-
rial. The physical and virtual camera exposures within each row are equivalent. The uncompensated projection images are
overexposed due to indirect scattering and the colors are dull. The differences in color fidelity between the clamped inverse
method and our QP optimization method are apparent and similar in both computer simulation and physical projection.

10. Conclusions & Future Work

We have presented a constrained optimization framework to
compensate for the inter-reflection of light in complex phys-
ical projection environments, such as Spatially Augmented
Reality. Our method preserves the average intensity, color
fidelity, and discontinuities of the desired imagery. Physical
environments with different reflectivity are studied. We also
demonstrate our compensation algorithm applied to archi-
tectural daylighting design and achieve interactive rendering
speeds for the visualization of a variety of different direct
lighting conditions.

We foresee a variety of continuing studies related to this
projection compensation technique. Our current absolute er-
ror metrics do not apply with Weber-Fechner law, and rel-
ative error is a better metric. We find that the relative error
can also be reformulated to a QP problem whose Hessian
is positive definite. Comparing and refining results gener-
ated by these two metrics is an interesting future work area.
We would also like to extend the compensation algorithm
to hierarchical radiosity to further accelerate the computing
speed. It may also be useful to extend the method to model

and compensate for non-diffuse light transport within the
system. Finally, for specific applications, such as architec-
tural daylighting design, we can study the typical range of
geometry and desired reflectance properties. This informa-
tion can be used to recommend the best compromise surface
albedos for the physical surfaces within the table-top SAR
system.
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